懂色av一区二区,精品久久久久久久久久久久包黑料 ,xxxxxxxxx欧美,国产精品一区二区久久精品

400-650-1086
首頁 > 最新資訊 > IT新聞 > 正文

深入淺出,解讀Google的人工智慧圍棋「大腦」

admin 2016-02-23 10:21:56 0

在象棋和國旗象棋中,電腦軟體都非常厲害,只有圍棋是唯一“電腦贏不過人類”的項目。而今年1月份有個爆炸性的新聞:Google DeepMind 開發的人工智慧程式 AlphaGo 以5:0比數壓倒性擊敗了歐洲圍棋冠軍、專業二段棋手。并且3月份 AlphaGo 將會和韓國九段、世界冠軍李世石進行對弈。如果此役 AlphaGo 獲勝,將意味著人工智慧真正里程碑式的勝利。

這也引起了筆者的好奇心,在春節期間,跟 Facebook 的田淵棟(他的背景無可挑剔,卡內基梅隆大學機器人系博士,Alphabet X 無人車核心團隊,Facebook 人工智慧組研究員)交流,他做的也是計算機圍棋 AI --黑暗森林(熟悉《三體》的朋友知道怎幺回事),今年1月份他的文章被機器學習頂級會議 ICLR 2016 接受,(表達學習在江湖上稱作深度學習或者特徵學)已在機器學習社群開闢了自己的江山,成為學術界的新寵。

他談到自從Google收購了DeepMind,投入大量資源去做好人工智慧專案,不為別的,就是要向世界證明Google智慧的強大。發表在頂級期刊《Nature》的論文光看作者就20個,明顯是下了血本,前兩位都是計算機圍棋界的權威,第一,銀鴻是計算機圍棋和強化學習的頂級專家,整個博士論文主題就是圍棋;第二,阿哈黃以前寫過多年圍棋軟體,自己又是AGA6D的水平。

還是不多說廢話,下面是SpinPunch CTO對AlphaGo的工作原理解讀,原文見參考資料。


Google DeepMind宣布他們研發的神經網絡圍棋AI──AlphaGo,戰勝了人類職業選手。這篇論文由銀鴻等人完成。其中的技術是出乎意料地簡單而強大。為了讓不熟悉的讀者更容易理解,以下是我對系統工作原理的解讀。

深度學習

“深度學習”是指多層的人工神經網絡和訓練它的方法。一層神經網絡會把大量矩陣數字輸入,通過非線性激活方法取權重,再產生另一個數據集合作為輸出。

這就像生物神經大腦的工作機理一樣,透過合適的矩陣數量,多層組織鏈接一起,形成神經網絡“大腦”進行精準複雜的處理,就像人們識別物體、標注圖片一樣。

雖然神經網絡在幾十年前就有了,直到最近才浮出檯面。這是因為他們需要大量的“訓練”去發現矩陣中的數字價值。對早期研究者來說,想要獲得不錯效果的最小量測試,都遠遠超過計算能力和能提供的數據的大小。但最近幾年,一些能獲取大量資源的團隊重現挖掘神經網絡,其實就是透過“大數據”來使測試更有效率。

兩個大腦

AlphaGo是透過兩個不同神經網絡“大腦”合作來優化下棋程式。這些大腦是多層神經網絡,跟Google圖片搜索引擎識別圖片原理相似。它們從多層啟發式二維過濾器開始,去處理圍棋棋盤的定位,就像圖片分類器網絡處理圖片一樣。經過過濾,13個完全連接的神經網絡層產生對它們看到的局面判斷。這些層能夠做分類和邏輯推理。

這些網絡透過反覆運算來檢查結果,再去校對調整參數,去讓下次執行更好。這個處理器有大量的隨機性元素,所以我們是不可能精確知道網絡是如何“思考”的,但更多的運算后能讓它進化到更好。

第一大腦:落子選擇器(行動機械手)

AlphaGo的第一個神經網絡大腦是“監督式學習的策略網絡(政策網絡)”,觀察棋盤布局企圖找到最佳的下一步。事實上,它預測每一個合理下一步的最佳概率,你可以想像成“落子選擇器”。

落子選擇器是怎幺看到棋盤的?數字呈現出最強人類選手會下在哪些地方的可能性。

團隊透過在KGS(網路圍棋對戰平臺)上最強人類對手、百萬級的對弈落子去訓練大腦。這就是AlphaGo最像人的地方,目標是去學習那些頂尖高手的妙手。不是為了贏棋,而是去找一個跟人類高手同樣的下一步落子。AlphaGo落子選擇器能正確符合57%的人類高手。(不符合的不是意味著錯誤,有可能是人類自己犯的失誤)

更強的落子選擇器

AlphaGo系統事實上需要兩個額外落子選擇器的大腦。一個是“強化學習的策略網絡(策略Network)”,通過百萬級額外的模擬局來完成。比起基本的訓練,只是教程式去模仿單一人類的落子,高級的運算訓練會與每一個模擬棋局下到底,教程式最可能贏的下一步棋。 Sliver團隊通過更強的落子選擇器總結了百萬級訓練棋局,比他們之前版本又強化了不少。

單單用這種落子選擇器就已經是強大的對手了,可以到業余棋手的水平,或者說跟之前最強的圍棋AI媲美。這里重點是這種落子選擇器不會去“讀”。它就是簡單審視從單一棋盤位置,再提出從那個位置分析出來的落子。它不會去模擬任何未來的走法。這展示了簡單的深度神經網絡學習的力量。

更快的落子選擇器

AlphaGo當然團隊沒有在這里止步。下面我會闡述是如何將閱讀能力賦予AI的。為了做到這一點,他們需要更快版本的落子選擇器大腦。越強的版本耗時越久──不過為了產生一個不錯的落子也夠快了,但“閱讀結構”需要去檢查幾千種落子可能性才能做決定。

Sliver團隊建立簡單的落子選擇器去做出“快速閱讀”的版本,他們稱之為“滾動網絡”。簡單版本是不會看整個19 * 19的棋盤,但會在對手之前下的和新下的棋子中考慮,觀察一個更小的窗口。去掉部分落子選擇器大腦會損失一些實力,但輕量級版本能夠比之前快1000倍,這讓“閱讀結構”成了可能。

第二大腦:棋局評估器(位置計算器)

AlphaGo的第二個大腦相對于落子選擇器是回答另一個問題。不是去猜測具體下一步,它預測每一個棋手贏棋的可能,在給定棋子位置情況下。這“局面評估器”就是論文中提到的“價值網絡(價值Network)”,通過整體局面判斷來輔助落子選擇器。這個判斷僅僅是大概的,但對于閱讀速度提高很有幫助。通過分類潛在的未來局面的“好”與“壞”,AlphaGo能夠決定是否通過特殊變種去深入閱讀。如果局面評估器說這個特殊變種不行,那幺AI就跳過閱讀在這一條線上的任何更多落子。


局面評估器是怎幺看這個棋盤的,深藍色表示下一步有利于贏棋的位置。

局面評估器也通過百萬級別的棋局做訓練.Silver團隊通過複製兩個AlphaGo的最強落子選擇器,精心挑選隨機樣本創造了這些局面。

這里AI落子選擇器在高效創建大規模數據集去訓練局面評估器是非常有價值的。這種落子選擇器讓大家去模擬繼續往下走的很多可能,從任意給定棋盤局面去猜測大致的雙方贏棋概率。而人類的棋局還不夠多恐怕難以完成這種訓練。

增加閱讀

這里做了三個版本的落子選擇大腦,加上局面評估大腦,AlphaGo可以有效去閱讀未來走法和步驟了。閱讀跟大多數圍棋AI一樣,透過蒙特卡洛樹搜索(MCTS)算法來完成。但AlphaGo比其他AI都要聰明,能夠更加智慧的猜測哪個變種去探測,需要多深去探測。

蒙特卡洛樹搜索算法

如果擁有無限的計算能力,MCTS可以理論上去計算最佳落子透過探索每一局的可能步驟。但未來走法的搜索空間對于圍棋來說太大了(大到比我們認知宇宙里的粒子還多),實際上AI沒有辦法探索每一個可能的變種.MCTS做法比其他AI有多好的原因是在識別有利的變種,這樣可以跳過一些不利的。

銀鴻團隊讓AlphaGo裝上MCTS系統的模組,這種框架讓設計者去嵌入不同的功能去評估變種。最后馬力全開的AlphaGo系統按以下方式使用了這些大腦。

從當前的棋盤布局,選擇哪些下一步的可能性。他們用基礎的落子選擇器大腦(他們嘗試使用更強的版本,但卻讓AlphaGo更弱,因為這沒有讓MCTS提供更廣闊的選擇空間)。它只集中在“明顯最好”的落子,而不是去選擇也許對后來有利的下法。

對于每一個可能的落子,有兩種評估方式:要不用棋盤上局面評估器在落子后,要不運行更深入的蒙特卡羅模擬器去思考未來的落子,使用快速閱讀的落子選擇器去提高搜索速度。 AlphaGo使用簡單的參數──“混合相關係數”,將每一個猜測取權重。最大馬力的AlphaGo使用50/50的混合比,使用局面評估器和模擬化滾動去做平衡判斷。

    這篇論文包含一個隨著他們使用插件的不同,AlphaGo的能力變化和上述步驟的模擬。若僅使用獨立大腦,AlphaGo跟最好的計算機圍棋AI差不多強,但當使用這些綜合手段,就可能到達職業選手水平。


    AlphaGo的能力變化與MCTS的插件是否使用有關。

    這篇論文還詳細講了一些工程優化:分布式計算,網絡計算機去提升MCTS速度,但這些都沒有改變基礎算法。這些算法部分精確,部分近似。在特別情況下,AlphaGo透過更強的計算能力變得更強,但計算單元的提升率隨著性能變強而減緩。

    優勢和劣勢

    我認為AlphaGo在小規模戰術上會非常厲害。它知道通過很多位置和類型找到人類最好的下法,所以不會在給定小範圍的戰術條件下犯明顯錯誤。

    但是,AlphaGo有個弱點在全局判斷上。它看到棋盤式通過5 x 5金字塔式的過濾,這樣對于集成戰術小塊變成戰略整體上帶來麻煩,同樣道理,圖片分類神經網路往往對包含一個東西和另一個的搞不清。比如說圍棋在角落上一個定式造成一個墻或者引徵,這會劇烈改變另一個角上的位置估值。

    就像其他的基于MCTS的AI,AlphaGo對于需要很深入閱讀才能解決的大勢判斷上,還是麻煩重重的,比如說大龍生死劫。 AlphaGo對一些故意看起來正常的局也會失去判斷,天元開盤或者少見的定式,因為很多訓練是基于人類的棋局庫。

    我還是很期待看到AlphaGo和李世石9段的對決!我預測是:如果李使用直(straight)式,就像跟其他職業棋手的對決,他可能會輸,但如果他讓AlphaGo陷入到不熟悉的戰略情形下,他可能就贏。


    以上為原文結束分割線,以下為筆者個人感想。

    這里我還想到另一個人,中國最強大腦選手鮑橒,當時看了他走出蜂巢迷宮,被他的超強的空間記憶和想像能力深深震撼了,而他的職業就是圍棋選手,并且是盲棋。他能完成1對5的圍棋盲棋,實在是很不可思議的事情。

    在圍棋圈內,幾乎沒有棋手能完成盲棋,因為確實太難了。筆者也向他詢問了對這個事情看法,他說,歐洲冠軍沒能摸到程式的底,但從棋譜來說,對Google程式我也難以取勝,確實下的不錯。雖然圍棋圈一致看好李世石,不過我不敢確定Google的程式3月份進展到什幺地步。

    再說到Facebook的田博士,跟google DeepMind超豪華團隊長期投入不同,他就在半年多前從立項到實現,直到最近才有一個實習生加入幫他,而背后是他付出的心血,為了搶時間,在圣誕新年都是加班加點,按他所說,每日工作10+小時,自己搭機器,寫程式,調參數,單槍匹馬做出成績。

    談到跟Google團隊的較量,田博士說:“這是一場必敗的戰斗”,但我還是很佩服他,他讓我想到三國時代趙子龍,單槍匹馬大戰曹軍,力拔山兮氣蓋世!因為他是真正的勇士。

    正是有了這些英勇無畏的科學家,一次次打破常規,挑戰極限,我們才知道人類如此大的潛力。最近短短幾年的發展,從大數據,深度學習人工智慧到虛擬實境,從發現了類地球行星,證實重力波,從Hyperloop,無人駕駛,量子計算,這些魅力無窮的科技讓我們對世界的認識上升到新的高度。面對這個激動人心的時代,我想說,天空是我們的極限,宇宙是我們的極限,未來才是我們的極限!

    最后允許我拿田博士的話來結束。

    我有時候會問自己:“我是不是背棄了夢想”我想除了我自己,任何人都不會給我答案,任何評論也不具效力。我記得有人問過,如果夢想從踐行的一開始,就在不自覺地向現實妥協,那樣的夢想還是最初的夢想嗎?其實,這樣的問題沒什幺可糾結的,因為世界從來就不是二元的,夢想和現實,如同高懸的日月,日月之間,有一條灰色的路,在自己腳下蜿蜒曲折,繞過各種險阻,一直向前。

    而我能做的,只是要在奔跑時,不停提醒自己,還記得“夢想”這個詞的含義。

    文章來源:機房監控 http://m.scdprobes.com

    售前咨詢

    專線:劉剛 13911133352

    E-mail:112417434@qq.com

    北京金恒智能系統工程技術有限責任公司 版權所有 Copyright 2007-2020 by Create-china.com.cn Inc. All rights reserved.

    法律聲明:未經許可,任何模仿本站模板、轉載本站內容等行為者,本站保留追究其法律責任的權利!

    電話:86+10-62104277/2248/4249 傳真:86+10-62104193-819 京ICP備10010038號-2網站XML

    智慧機房

    在線體驗

    CREATE·機房監控 體驗端  用戶名:Admin    密碼:12345 點擊體驗
    在線咨詢 電話咨詢
    懂色av一区二区,精品久久久久久久久久久久包黑料 ,xxxxxxxxx欧美,国产精品一区二区久久精品
    国产精品羞羞答答xxdd| 色综合亚洲欧洲| 久草这里只有精品视频| 亚洲成人高清在线| 亚洲少妇30p| 国产精品毛片大码女人| 久久综合色8888| 日韩久久久精品| 99久久精品国产导航| 国产亚洲制服色| 5566中文字幕一区二区电影| 日本精品视频一区二区| 99久久精品国产精品久久| 成人小视频免费在线观看| 国产精品一区专区| 国产在线一区二区综合免费视频| 美美哒免费高清在线观看视频一区二区| 亚洲欧洲av在线| 欧美电影免费观看高清完整版在| 欧美日韩精品电影| 国产精品久久午夜夜伦鲁鲁| 欧美日韩aaaaaa| 91原创在线视频| 欧美在线免费播放| 欧美女孩性生活视频| 4438成人网| 精品捆绑美女sm三区| 欧美成人精品1314www| 久久天堂av综合合色蜜桃网| 久久麻豆一区二区| 日韩毛片高清在线播放| 亚洲精品视频免费观看| 亚洲欧洲成人精品av97| 亚洲色图19p| 亚洲夂夂婷婷色拍ww47| 日韩中文字幕一区二区三区| 强制捆绑调教一区二区| 日日摸夜夜添夜夜添精品视频| 亚洲综合色噜噜狠狠| 日本免费新一区视频| 精品一区二区三区在线播放视频| 国产乱人伦偷精品视频免下载 | 日本中文字幕一区二区视频 | 久久亚洲一区二区三区四区| 精品国产一区a| 日韩久久一区二区| 日本不卡一区二区三区| 国产精品一二三区| 色就色 综合激情| 日韩精品资源二区在线| 国产日本欧洲亚洲| 亚洲国产人成综合网站| 久久超碰97中文字幕| av中文字幕一区| 日韩免费成人网| 亚洲欧美偷拍卡通变态| 日韩成人av影视| 国产91综合一区在线观看| 91久久精品一区二区三| 亚洲精品一区二区三区99| 亚洲视频一区二区在线| 日本中文字幕不卡| 成人黄色在线视频| 亚洲午夜日本在线观看| 免费成人小视频| 99在线精品观看| 91精品国产一区二区人妖| 国产精品女同互慰在线看| 亚洲影视在线观看| 毛片基地黄久久久久久天堂| 在线精品亚洲一区二区不卡| 欧美成人三级电影在线| 亚洲免费观看高清完整版在线观看 | 日韩一区二区高清| 国产精品成人免费在线| 日本最新不卡在线| 国产成人免费视| 欧美午夜一区二区| 国产欧美日韩精品一区| 免费成人在线影院| 一本色道久久综合狠狠躁的推荐 | 波多野结衣精品在线| 欧美成人精品3d动漫h| 亚洲精品福利视频网站| 日韩在线播放一区二区| www.欧美日韩国产在线| 欧美成人a∨高清免费观看| 一区二区三区精密机械公司| 国产成人在线视频网站| 日韩欧美亚洲国产另类| 亚洲影视在线播放| 99久久久国产精品| 久久精品视频在线免费观看| 日韩不卡一二三区| 成人手机电影网| 国产精品入口麻豆原神| 国产精品影视网| 26uuu另类欧美亚洲曰本| 日韩激情一二三区| 欧美日韩卡一卡二| 一区二区视频在线看| 成人激情黄色小说| 日本一区二区三区久久久久久久久不| 日韩av中文在线观看| 91行情网站电视在线观看高清版| 天堂影院一区二区| 99国产精品久久久| 久久精品夜夜夜夜久久| 激情综合色综合久久综合| 欧美精选午夜久久久乱码6080| 亚洲精品国产无天堂网2021 | 亚洲国产综合在线| 不卡大黄网站免费看| 欧美α欧美αv大片| 国产一区二区毛片| 国产女同互慰高潮91漫画| 国产精品88888| 国产欧美精品一区二区三区四区| 国产一区二区三区香蕉| 精品国产成人系列| 国产伦理精品不卡| 91精品国产综合久久久蜜臀粉嫩 | jlzzjlzz欧美大全| 1024成人网色www| 91在线精品一区二区| 亚洲三级在线观看| 在线观看视频欧美| 亚洲成av人片一区二区| 777精品伊人久久久久大香线蕉| 日韩成人免费在线| 精品国产一区久久| 国产精品888| 精品成人a区在线观看| eeuss鲁片一区二区三区在线看| 综合电影一区二区三区| 色婷婷亚洲精品| 午夜精品福利久久久| 欧美一级高清片在线观看| 久久超碰97人人做人人爱| 久久日韩粉嫩一区二区三区| 懂色中文一区二区在线播放| 久久久91精品国产一区二区精品 | 成人中文字幕合集| 日韩伦理av电影| 在线成人小视频| 国产精品羞羞答答xxdd| 亚洲精品一区二区在线观看| 国内成人精品2018免费看| 国产婷婷一区二区| 色综合天天性综合| 丝袜亚洲另类欧美综合| 精品国产一区二区三区久久影院| 天堂影院一区二区| 色综合久久久久网| 日韩黄色一级片| 国产日韩精品一区二区三区| 色噜噜狠狠成人网p站| 久久狠狠亚洲综合| 亚洲三级免费观看| 欧美一区二区三区的| 成人午夜激情影院| 爽好久久久欧美精品| 国产目拍亚洲精品99久久精品| 色婷婷久久综合| 国内外精品视频| 国产精品超碰97尤物18| 欧美成人性福生活免费看| 99久久久久免费精品国产| 日本女优在线视频一区二区 | 另类调教123区| 亚洲丝袜自拍清纯另类| 制服丝袜亚洲色图| jiyouzz国产精品久久| 蜜臀a∨国产成人精品| 久久精品无码一区二区三区| 欧美在线看片a免费观看| 国产不卡视频在线观看| 日韩中文字幕亚洲一区二区va在线 | 日韩写真欧美这视频| 国产一区91精品张津瑜| 理论片日本一区| 亚洲愉拍自拍另类高清精品| 国产午夜精品理论片a级大结局| 欧美精品一级二级三级| 99久久精品国产麻豆演员表| 韩日精品视频一区| 亚洲国产一区二区视频| 国产亚洲精品bt天堂精选| 欧美日韩dvd在线观看| av日韩在线网站| 国产精品1区2区| 蜜臀久久久久久久| 亚洲国产成人精品视频| 一区免费观看视频| 久久久国产精品不卡| 精品国产电影一区二区| 日韩一级片在线播放| 欧美人与z0zoxxxx视频| 日本精品免费观看高清观看| gogo大胆日本视频一区|